
   
        
FORCED VIBRATION OF SINGLE DEGREE-OF-FREEDOM SYSTEMS 

MODULE: MMME2046 DYNAMICS & CONTROL 
 
 
So far, we have looked at free vibration of systems and at their natural frequencies and 
mode shapes.  This section will analyse the response of single degree-of-freedom 
systems to external excitation.  This takes the form either of applied forces and/or 
moments or of imposed displacement on part of the system. 
 
We will also introduce the effects of damping.  Damping is a phenomenon characterising 
the dissipation of energy in a structure.  If there was no damping and a structure was set 
vibrating and then left, the mathematics would suggest that it would carry on vibrating 
forever.  This, of course, is impossible and the structure would stop.  This is because all 
real structures dissipate energy.  There are many ways this can take place and 
mechanisms include hysteresis effects in the material, friction between parts, 
aerodynamic interaction with the surrounding fluid and noise radiated from the surfaces. 
 Most real damping mechanisms are difficult to handle mathematically and we will 
consider one theoretical damping model, called viscous damping and will only consider 
discrete dampers.  These can be pictured as a piston-cylinder device in which a viscous 
fluid is displaced from one side of the piston to the other through a constriction such as 
an orifice.  Vehicle “shock absorbers” (dampers) are normally based on this idea. 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the viscous damping model, we assume that the force in the damper is proportional to 
the relative velocity between the ends and acts to oppose the imposed motion.  The 
constant of proportionality is called the damping coefficient (normally given the symbol 

c) and has units of N/(m/s) [or Ns/m]. 

 
Hence the force opposing the motion is   
 
Note that dampers do not impose any stiffness on the structure; they only transmit a 
force if there is relative motion between the ends.  If there is no motion, there is no 
force. 
 
In most engineering structures, the level of damping is low.  As a result, any 
discrepancies between the assumed viscous damping model and the true damping 
mechanism are generally small, so that the error introduced by our mathematical model 
is also small. 
 
In the examples that follow, the steps leading to the equation of motion are the same as 
before with the addition of any damping forces and any external excitation.  We will then 
look at the solution to the equation of motion for a few types of excitation. 
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Example 1   Mass-Spring-Damper System 
 
STEP 1:  Dynamic mass-spring model  STEP 2:  Free Body Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
STEP 3:  Equation of motion 
 
 
 
 
 
 
 
 

Example 2   Rocker system 
 
STEP 1:  Dynamic mass-spring model STEP 2:  Free Body Diagram 
 (for small displacements) 
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STEP 3:  Equation of motion 

 
 
 
 
 
 

Example 3   Single-axle caravan 
 
We will make the following simplifying assumptions. 
 
1 The tyres are very stiff compared to the 

suspension springs (typically they are 
about 10 times stiffer). 

2 The tyres do not lose contact with the road. 
Taken with Point 1 this means that vertical 
motion of the axle will follow the road 
profile exactly. 

3 The caravan body behaves as a rigid mass. 

4 Only vertical motion of the body is 
considered; pitching and rolling are ignored. 

 
 
STEP 1:  Dynamic mass-spring model STEP 2:  Free Body Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The free-body diagram is a “snapshot” of the system when all motions (both 
displacements and velocities) are positive.  It shows the positive directions of the 
forces that the springs and dampers exert on the mass.  The expression for the force in 
the spring is given by Spring force  =  Stiffness  x  Change of length, so we ask: 

 What is the change of length of the spring, noting that both ends of the 
spring move in this problem? 

 Is the spring in tension or compression? 

For the damper, Damper force  =  Damping coefficient  x  Relative velocity, so we 
ask: 

 What is the relative velocity between the ends of the damper, noting 
again that both ends are moving? 

 Is the damper being extended or compressed? 
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STEP 3:  Equation of Motion 
 
 
 
 
 
 
This is an example where the excitation is in the form of a prescribed displacement 

instead of a force.  For any given vehicle speed, the shape of the road profile, )(  t  r , can 

be measured as an explicit function of time, so that we know exactly what the 

displacement of the axle will be.  Differentiating the displacement give )(  t  r , again as 

an explicit function of time.  As a result, the excitation term on the RHS of the equation 
of motion is completely defined. 
 
Warning: A common error made by students is to treat the displacement of the axle as 

if it was a “force” applied directly to the body.  This is wrong.  The forces 
experienced by the body due to the movement of the axle are applied 
through the springs and dampers and depend on the change of length of the 
spring and the relative velocity across the damper, respectively. 

 
 
Summary so far 
 
The equations of motion for the three examples are as follows. 
 

Mass-spring-damper system      tPxkxcxm    

 

Rocker system     tPLLKLKLcLm 2
2
22

2
11

2
2

2
2 θθθ    

 

Single-axle caravan          trktrcxkxcxm .2.222    

 
 
While each of the equations is different in detail, you will see that they all share a 
common mathematical form, that of a second-order ordinary differential equation 
with constant coefficients.  All linear, single-degree-of-freedom systems have this 
form, which can be written generically as: 
 

 (1) 
 

 

in which  z is the response coordinate 

M is the coefficient of z  

C is the coefficient of z  

K is the coefficient of z and 

F( t ) is the excitation function; independent of z 
 
 
The exact form of the 3 coefficients and of the excitation function will depend uniquely 
on the system being analysed.   
 

Remember that every term in the expressions for the coefficients M, C and K 

must be positive1 and that any negative sign means that your equation is 

definitely wrong.   

                                                 
1  Depending on the positive directions chosen for the response, the excitation can be 

either positive or negative. 

  t  F  =z   K  +  z C  +  z M 
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There is no point in proceeding until you have found the error.  If you find a negative 
sign, go back and first check your free-body diagram and then check if you have applied 
Newton’s 2nd Law correctly (in particular, checking that you have resolved the 
forces/moments in the direction of the motion coordinate).  
 
 

Solutions to the equation of motion 
 
The subsequent mathematical manipulation required to solve the equation of motion 
depends on the nature of the excitation function and on the amount of damping in the 
system.  A total of 6 cases will be considered, divided into 3 sections.  You must learn to 
recognise the various cases so that you can apply the appropriate solution procedure. 
 

A:  “FREE” VIBRATION 
Case (i) Zero damping 
Case (ii) High damping 
Case (iii) “Critical” damping 
Case (iv) Low damping 

B:  RESPONSE TO HARMONIC (SINUSOIDAL) EXCITATION 

C:  RESPONSE TO ARBITRARY PERIODIC EXCITATION 
 
Section A is covered below and there are separate handouts for Sections B and C. 
 
 
 

Section A:  “FREE” VIBRATION 
 
If no externally applied forces/moments act on a structure, it can vibrate freely; hence 
the term “free” vibration.  We have previously used this situation to find the natural 
frequency of undamped systems.  As mentioned above, the presence of damping means 
that any vibration will stop sooner or later and consequently the term “transient 
response” is often used in place of free vibration. 
 

For F ( t )  =  0, we can use a solution in the form,   e
λ  t A=tz  

 
Substituting into the equation of motion gives, 
 
 
 
 

For a non-trivial solution, 0λλ
2     K    C    M   

 
 
so that 
 
       (2) 
 
 
The complete solution is then 

 
    (3) 
 

The integration constants, A1 and A2, are found from the “initial conditions” specified in 

the problem.  These will normally be the displacement and velocity at t = 0.  The values 
may be stated, or you may have to work them out from information in the problem. 
 

It can be seen from equation (2) that the roots 1, 2 can be either real or complex, 
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depending on the amount of damping present.  While equation (3) gives a 
mathematically correct description of the response, other forms relate more closely to 
engineering intuition and are thus easier to interpret.  Four cases with different damping 
levels are considered. 
 
 

CASE (i)  ZERO DAMPING 
 
For zero damping, we know that the system will oscillate with simple harmonic motion, 
although the sinusoidal waveform is not obvious from equation (3).   
 
 

For C = 0,
     

 
 
 

The term 
M

K
  is called the “undamped natural frequency” and is given the symbol 

ωn.  Previously, we used the term “natural frequency” for this.  As we shall see later, a 

damped system will have a frequency at which it will vibrate freely, so the words 
“undamped” or “damped” are used to distinguish between the two. 
 
 
Returning to the general case, equation (3) becomes 
 
 
 
This still does not look much like a sinusoidal waveform.  However, by using the complex 
number identities, 
 
 
 

and the fact that A1 and A2 are a complex conjugate pair, you should be able to show that 

 
   (4) 
 

 
Try this as an exercise. 
 
 
Once you have recognised that a problem is one of free vibration with zero damping, it 
will normally be most convenient (and will certainly give a solution which is easiest to 

interpret) if equation (4) is used rather than equation (3).  Again, the constants B and C 

are found from the initial conditions of the problem. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Exercise If an undamped structure is given an initial displacement Z 0 and then 
released from rest, show that the subsequent response is given by  

 

  tZtz nωcosO  

   t  Ct  B  tz nn ωsinωcos 
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 Exercise If a heavily damped structure is given an initial displacement Z O and then 

released from rest, show that the constants of integration are 
 

λ - λ

λ

λ - λ

λ
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  A         

  Z
 A   

 

  Sketch the graph of z(t) against time. 

 

Exercise A critically damped structure is subjected to an impulse such that it 

acquires an instantaneous initial velocity, VO , while the displacement 

remains zero.  Show that the subsequent displacement is given by, 

  tntVtz
ω

O e


  

 

CASE (ii)  HIGH DAMPING 
 

If the damping level is high so that  C > 4KM, the two roots, 1, 2, are both REAL and 

NEGATIVE.  The response, as given by equation (3), is the sum of 2 decaying 

exponential functions.  The constants A1 and A2 are found from the initial conditions as 

usual. 
 
 

 
 
 

CASE (iii)  “CRITICAL” DAMPING 
 

A special case for the roots of equation (2) occurs if MKC 42  .  This value of damping 

is known as “critical damping”, which is thus given by 
 

MKC 2crit       (5) 

From equation (2) it will be seen that  ω -    
 2

 -    λ    λ
crit

21 n
M

C
  

 
In this situation, in order to maintain distinct parts to the solution, the response is given by 

 
      (6) 
 

Note the “t” in the second term. 

 
 
 
 
 
 
 
 
 
 
 

                                                 
2  For example, the critical damping expression for the rocker system is 

 2

22
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22 LKLKLm   

This is an important relationship, but again, you must remember that K and M are the 

coefficients from the equation of motion and may be related to individual springs and 

masses in the system in a complicated way.2 
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CASE (iv)  LIGHT DAMPING 
 
The vast majority of engineering structures possess damping levels much less than 
critical.  From common experience, we know that a structure left to vibrate freely will 
come to rest eventually.  The light damping case is thus the norm.  Mathematically, this 

corresponds to the case where MKC 42   and the roots of equation (2) are a complex 

conjugate pair, viz. 
 
   (7) 
 
 

 

It is convenient to introduce the damping ratio, 
K M

CC
    

 2
    

dampingcritical
γ   

 

This formula is on the formula sheet, but please remember that M, C and K are 

coefficients from the equation of motion. 
 

Using also the expression for the undamped natural frequency, ωn, equation (7) becomes 

 
           (8) 
 

 
Substitution into equation (3) gives a mathematically correct (but not very convenient) 
solution. 

 
 
 (9) 
 

 

Again, making use of the complex exponential identities and the fact that A1 and A2 are a 

complex conjugate pair, equation (9) can be re-written as 
 

 
 (10) 
 

 
 
Equation (10) matches our intuition since it describes a sinusoidal waveform (indicated 
by the terms in the square brackets) with an exponentially decaying term at the front 

that will cause the amplitude of the sinusoid to decrease.  Note that the constants B1 and 

B2 are both real.  As an alternative, equation (10) can be re-written as 

 
 
     (11) 
 
 

Equations (10) and (11) are printed on the formula sheet provided for the examination. 

Once you establish that the problem involves low damping (i.e., that  < 1), you can use 

either equation to give the general response.  As with the previous cases, you then need 
to find the two constants for the particular initial conditions specified in the problem. 
 
Note that equations (10) and (11) both show that the frequency of vibration is 

     n γ1ω
2

 .  This is known as the “damped natural frequency” and is less than the 

undamped natural frequency, ωn. 
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Worked Example  When at rest in equilibrium, the mass receives an impulse, 

J, of 5 Ns applied at time, t = 0. 

 

Find the response for t > 0. 

 

Data: k = 500 N/m    c = 20 Ns/m m = 10 kg 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Continue on additional pages  
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Estimating Damping  
 
While the mass and stiffness of a structure can normally be calculated, the structural 
damping is very difficult to predict.  However, equations (10) and (11) show that the 
rate of decay of the free vibration of a structure depends directly on the damping ratio 
and this gives a method of measuring damping. 
 
In the above worked example, suppose we didn’t know the damping value, but had done 
an experiment to measure the transient displacement from the impulse.  Here is the 
measured response waveform. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We know that the expression for the displacement is    t 
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Taking logs of both sides of the expression for the ratio of the peaks, we get: 

2ln
2

1     
X

X





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


 

 

In this case, m0431.01 X  and m0229.02 X , so that 101.0  and Ns/m1.20c . 

 
 
Note that the ratio of any two successive peaks is a constant, so there is good scope for 
making several estimates of the damping ratio from a measured response waveform. 
 

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (s)D
is

p
la

c
e
m

e
n
t 

(m
)


